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SUBDIVISION OF MOTIONS AND ASYMPTOTIC METHODS I N THE THEORY
OF NONLINEAR OSCILLATIONS

A. M. MOLCANOV

At the present time the most effective method in the asymptotic theoty of nonlinear oscillations ig
the method of averaging [1]. In the present note we discuss the possibility of a different point of viey
with regard to asymptotic methods, that of subdivision of motions into fast motions and slow (evolu-
tionary) motions. As will be shown, the method of averaging and also the method related to it of in-
vestigating systems with rapidly rotating phase [1> 2] are special cases of the method of subdivision
of motions.

Tuming to the formulation of the concept of subdivision of motions, we consider at the same time
equations of the unperturbed motion

du/dt = U(u) (1)
and of the perturbed motion
dv/dt = U(v) + V (v), 2
where the perturbing function ¥V has an asymptotic expansion in powers of a small parameter ¥V (g, v) =
eVl (v) + & V2 (v) + ++-. We denote by
u=ulw, t) (3)
the solution of the system (1) with initial conditions u| 0 = u(w, 0) =w.

It is not difficult to show that the solution of equation (2) can likewise be written in the form (3),
but it is then necessary to regard w not as constant but as depending on ¢, analogous to the method
of variation of parameters in linear equations. The equation for w thus obtained will in general con-
tain the time explicitly. In particular, in the linear case there may appear secular terms. It is clear
that the investigation is essentially simplified when the equation for w is autonomous, i.e., does not
contain the time explicitly. This equation is naturally called evolutionary, since it describes a slow
variation of the system which is independent of its basic rapid motion. In this case we shall say of
the system (2) that it admits subdivision of motions.

Systems admitting subdivision of motions play a role among general systems of the form (2) anal-
ogous to the role of diagonal systems among linear systems. just as a system of linear equations car
be transformed to diagonal form by a linear change of variables, a nonlinear system (2) can be trans-
formed by a nonlinear change of variables into a form which admits subdivision of motions. The degen
erate case, which corresponds to the case of Jordan form in linear equations, is excluded.

Our present goal is to determine those cases in which a system admits subdivision of motions.
Substituting (3) into (2) we have

ou  du dw
-(—9?4_—8—1;)7[: U(u)-l—y(u).

Here and later the symbol du/8w and analogous symbols denote matrices whose elements are the
partial derivatives of the components of the vector u with respect to the components of the vector w-

By the definition of the function u(w, ) its partial derivative with respect to ¢ is U(u). Therefore
the first terms in the two sides of the equation cancel, and we obtain after multiplication on the left
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by (8u/dw) 1
dw/dt =W (w, t), (4)
where we have set
V= (8u/3w)1 V. (5)
By the definition of a system which admits subdivision of motions, the right member of (4) must
pot contain the time explicitly. A simple calculation shows that

Therefore a necessary and sufficient condition for subdivision of motions is
Py 2y %
If this is satisfied, equation (2) gives the formula
v =u(wl), £), (8)
where w () is the solution of equation (4), which in this case takes the form
dw/dt = V{(w). )

This is obtained at once from (5) for ¢ = 0, since then Su/5w = E. But since ¥ does not depend on
t, the equation W =V (w) holds identically.

Thus to solve equation (2) when condition (7) is satisfied, it is sufficient to solve equations (1)
and (9) independently, and then to substitute in the solution of one of these equations (and it does
pot matter which, because of the symmetry of condition (7)) the solution of the other in place of the
initial conditions (cf. (8)). Note that if U and V are linear functions of their arguments, then (7) is
simply the condition for permutability of the matrices U and V. Thus the left member of condition (7)
is a natural generalization of the idea of commutator to the case of nonlinear operators.

We now proceed to the proof of the fact that by a change of variables the system (2) can be brought
to a form which admits subdivision of motions. The smallness of the parameter ¢ has played no role
up till now, but it now acquires decisive value. We will prove the existence of an asymptotic series
y=v+ te(v) + ezQz(v) + -+ such that the equation for ¥ admits subdivision of motions. Simple
but lengthy calculations show that an equation is obtained for ¥ analogous to the equation for v, with

the same principal term, as one would expect:
dy /de=U(y) + €Y (y) + €Y, (y) + - - (10)

It can be verified that the coefficient () , which we must determine, enters Y , in the following man-

ner:
5 %, U
=Y + =L -2
N Y=Y+ 5 U520, an
where Y , except for the given functions Vi> -5 V, depends only on the preceding Qll\,. 5 Qp-

In particular Y1 is simply V1 (y). Therefore when we come to determine Qn in its tura, Y may be
cousidered as a known function of y. We are to select the coefficients n SO that equation (10) admits
subdivision of motions. As we saw above, this is equivalent to the requitement that the functions Y n
commute with U in the sense of condition (7). Introducing the notation

3Y 8U
LN = - U= Y, (12)

we see that the problem of determining Qn is reduced to the problem of expressing the known func-

tion Yn as the sum of two terms, one of which is in the range of the linear operator £U while the

163



other is annulled by this operator.
Y --2,0)+7, &£,0)-0. (13)
Strictly speaking, the expression (12) is not an operator, since to specify an operator completely,
it is necessary to give its domain. The choice of domain is dictated by the set of functions ?n which
must be decomposed into the sum (13). If the choice of domain is determined in this way or otherwise,
the question of the possibility of the decomposition (13) reduces to the question of the absence in the
operator £ y ©of Jordan cells corresponding to the eigenvalue zero. We shall not discuss the possibil-
ity of degeneracy just now, but rather proceed to the consideration of a practically important case, in

which we may not only prove the existence of the decomposition, but may actually construct it.

This decomposition is based on a different interpretation of the decomposition (13), which is ob-
tained in the following manner. The formula (5) uniquely associates with each function V(u) a func-
tion of w and ¢, which is the result of a parallel displacement V () along trajectories of the unper-
turbed motion u(w, t). The decomposition (13) generates a decomposition with a very simple interpre-
tation among such functions. This is the decomposition of an arbitrary function of the form (5) into the
sum of two: a function integrable along the trajectories (i.e., representable as the partial derivative
with respect to ¢ of a function of the same form), and a function which does not change with displace-
ments along a trajectory. Such an interpretation follows at once from formulas (5), (6), and (13). We
note that by virtue of these same formulas and of the relation 8u/8w = E for t =0, which follows from
(3), the decomposition of functions of the form (5) gives the decomposition (13) on substitution of ¢ =,

The interpretation just analyzed is general and always useful, but in one case, important for ap-
plications, it leads at once to an effective solution of the problem. This is the case where the dis-
placement ’Yn along trajectories generates an almost periodic function of ¢ whose frequencies do not
accumulate at zero. (Indeed they exist in the form of just such functions.) The problem is then reduced
to separating out from the function its mean value, since it is not hard to verify that the vanishing of
the mean value is a necessary and sufficient condition for integrability of such functions (in the sense
of preserving inclusion in the class). Thus the decomposition of the function into the sum of a constant
plus a function with mean value zero gives the required decomposition. Omitting detailed calculations,
we mention the final result. (In the formulas, u = u(w, t), and integration with respect to ¢ is along
a trajectory, i.e., with w fixed.)

1 T osu "l
Yn(w)= %'120—7,5 (—5;)) Yn(u)dt, (14)
.1 T Su, b o
Qn(w)= %’1_1207 { (T -9 (E'v [Yn(u)——Yn(u)] dt. (15)

The formulas obtained are somewhat simplified if Y tuens out to be a periodic function of ¢. In

this case it is clearly sufficient to take the mean over a period T, even if this period depends on w.

Note that nonuniqueness of the choice of ¢, (since we may add to , an arbitrary term Q' for
which EU(Q'n) = 0) is removed from formula (15) by the requirement that Q, have mean zero. This
arbitrariness, which is not essential for the construction of the asymptotic theory, may be of importance
in the investigation of convergence of asymptotic series. This process of constructing Qn may turn
out not to be very successful, although at first glance it helps the convergence of the series for y as
much as possible.

As a second remark we mention the circumstance that the derivation of formulas (14) and (15) was
based on the almost periodicity in ¢ of the integrands. The factor (5u/6w)™! may not be almost peri-

164



odic in the case of rapidly rotating phase. Certain modifications of the derivation in this case lead
to formulas analogous to (14) and (15).

A third and final remark relates to the possibility of generalization of the averaging formulas to
the nonperiodic case by analytic continuation of u(w, t) for complex values of ¢, so that integration
takes place along certain curves in the complex domain, along which average value makes sense. Thus,
for example, if U(u) is a linear operator with real eigenvalues, formulas (14) and (15) give the desired
decomposition by integration along the imaginary ¢ axis. It is of interest to clarify whether such ex-
tensions are illusory or whether they essentially extend the circle of problems (13) which admit solu-
tions by formulas of the type (14) and (15). The example of the function sinh¢ + sint is a small en-
couragement in this direction.

It is therefore of interest to try to find approaches to the solution of the decomposition problem.
We shall discuss one possible approach. The equations of the unperturbed motion look simplest if a
system of first integrals of equation (1) is taken for new unknowns. But since the number of first inte-
grals is one less than the order of the system, it is still necessary to adjoin one further independent
function, which is naturally called the phase variable. In any case, such functions can be chosen in
the neighborhood of an arbitrary regular point of equation (1). It is easy to verify that in these variables
the decomposition problem leads to equations which can be integrated by quadratures. The solution
obtained contains arbitrary functions. Formally speaking, subdivision of motions takes place for an
arbitrary choice of these functions. However, the effectiveness of the asymptotic expansion depends
in an essential manner on the boundedness of its coefficients. In some cases the requirement of bound-
edness of coefficients eliminates the arbitrariness of choice of solution. Lack of space prevents a
more detailed discussion in this note of this interesting question, which is probably connected with
questions of convergence of asymptotic expansions.
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